Experimental Design of Time Series Data for Learning from Dynamic Bayesian Networks

نویسندگان

  • David Page
  • Irene M. Ong
چکیده

Bayesian networks (BNs) and dynamic Bayesian networks (DBNs) are becoming more widely used as a way to learn various types of networks, including cellular signaling networks, from high-throughput data. Due to the high cost of performing experiments, we are interested in developing an experimental design for time series data generation. Specifically, we are interested in determining properties of time series data that make them more efficient for DBN modeling. We present a theoretical analysis on the ability of DBNs without hidden variables to learn from proteomic time series data. The analysis reveals, among other lessons, that under a reasonable set of assumptions a fixed budget is better spent on collecting many short time series data than on a few long time series data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

First Studies of the Influence of Single Gene Perturbations on the Inference of Genetic Networks

Inferring the network structure from time series data is a hard problem, especially if the time series is short and noisy. DNA microarray is a technology allowing to monitor the mRNA concentration of thousands of genes simultaneously that produces data of these characteristics. In this study we try to investigate the influence of the experimental design on the quality of the result. More precis...

متن کامل

Inferring gene networks from time series microarray data using dynamic Bayesian networks

Dynamic Bayesian networks (DBNs) are considered as a promising model for inferring gene networks from time series microarray data. DBNs have overtaken Bayesian networks (BNs) as DBNs can construct cyclic regulations using time delay information. In this paper, a general framework for DBN modelling is outlined. Both discrete and continuous DBN models are constructed systematically and criteria f...

متن کامل

Learning Non-Stationary Dynamic Bayesian Networks

Learning dynamic Bayesian network structures provides a principled mechanism for identifying conditional dependencies in time-series data. An important assumption of traditional DBN structure learning is that the data are generated by a stationary process, an assumption that is not true in many important settings. In this paper, we introduce a new class of graphical model called a nonstationary...

متن کامل

Static Bayesian Modeling of Biological Time-Series Data

Recent research into reconstructing biological networks has examined the use of dynamic Bayesian networks to model time-series data. While intuitively appealing, dynamic Bayesian network modeling makes assumptions about the properties of time-series data which may not hold for sparsely sampled datasets. This work argues that static Bayesian networks may be a more appropriate model for such data...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing

دوره   شماره 

صفحات  -

تاریخ انتشار 2006